Problem 39)a) f(z) = exp(—z2) = exp[—(x + iy)?] = exp(—x? + y? — 2ixy)
= exp(y? — x?) cos(2xy) —iexp(y? — x?%) sin(2xy).

The real and imaginary parts of f(z) are thus seen to be u(x,y) = exp(y? — x2) cos(2xy)
and v(x,y) = —exp(y? — x2?) sin(2xy). The partial derivatives with respect to x and y of
u(x,y) and v(x, y) are readily found to be

ou/ox = —2x exp(y? — x%) cos(2xy) — 2y exp(y? — x?) sin(2xy),
ou/0y = 2y exp(y? — x?) cos(2xy) — 2x exp(y? — x?) sin(2xy),
0v/0x = 2x exp(y? — x?) sin(2xy) — 2y exp(y? — x?2) cos(2xy),
ov/dy = =2y exp(y? — x?) sin(2xy) — 2x exp(y? — x?) cos(2xy).

Clearly, du/dx = dv/0dy and du/dy = — dv/0dx. Since these Cauchy-Riemann conditions
are satisfied everywhere in the complex z-plane, the function f(z) = exp(—=z2) is analytic
everywhere.

b) The derivative with respect to z of f(z) is given by
f'(z) = 0,u+1i0,v = —2x exp(y? — x?2) cos(2xy) — 2y exp(y? — x?2) sin(2xy)
+i[2x exp(y? — x?) sin(2xy) — 2y exp(y? — x?) cos(2xy)]
= —2(x +iy) exp(y? — x?) cos(2xy) + i2(x + iy) exp(y? — x2) sin(2xy)

= —2(x + iy) exp(y?* — x2) [cos(2xy) + isin(2xy)] <{Euler identity: cosa + isina = e'®

= —2zexp(y? — x?) exp(i2xy) = —2z exp[—(x? — y? — 2ixy)]
= —2zexp[—(x + iy)?] = =2z exp(—2z?).

Alternatively, one may compute the derivative of f(z) by starting with the definition of the
derivative, and invoking the defining property of the exponential function, i.e., e = )20, z™/nl.
One will have
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= —2z, exp(—z2).




